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Abstract

We explore the use of a processing procedure based on restricted least square minimization as a tool for reducing the time versus

resolution dilemma often encountered for biomolecular multidimensional spectra. Using a 2D spectrum as a reference, we obtain the

necessary input of frequency components and linewidths. Combined even with a limited time evolution in the indirect dimension, the

amplitudes of the correlation peaks in all planes of the 3D spectra can be extracted, and can be used to reconstruct the interfer-

ograms in the third dimension. Parameters such as number of lines, threshold choice, resolution, lineshape, number of experimental

data points and finally signal to noise ratio of the spectrum are examined starting from a triple-resonance HNCA spectrum of

ubiquitin.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Structural genomics, defined as the rapid throughput

of protein structure determination, is promising to

complement from both a functional and structural point

of view the available data from the various genome

projects [1]. Whereas X-ray crystallography remains the

method of choice for large macromolecules, the modular

nature of many proteins with an average domain length
of 150–200 amino acids makes Nuclear Magnetic Res-

onance (NMR) a valid alternative, and recent develop-

ments have significantly extended the size accessible for

NMR [2,3]. Double or triple labeling [4,5] combined

with advanced triple-resonance techniques [6] and au-

tomated assignment software [7] have substantially cut

down on the time to assign the various resonances,

whereas improved analysis of the NOE contacts to-
gether with absolute constraints from partially oriented

samples [8] lead to improved efficiency of the structure
generation procedures. The inherently low sensitivity of

NMR will benefit of low temperature reception coils

such as recently implemented in the cryoprobes but,

even with the best hardware, the data acquisition of a

complete set of NMR data still requires several weeks to

months of machine time, and therefore puts a limit to

the throughput.

The time requirement of the triple-resonance spectra
is intimately linked to the resolution requirement.

Indeed, in order to obtain a reasonable resolution after

Fourier transform of the time domain signal, one needs

to acquire sufficient data points. Especially in the

indirect dimensions (15N or 13C) of a typical 3D triple-

resonance experiment, where the acquisition of each

individual complex point is equivalent to recording two

2D experiments, time versus resolution is a real di-
lemma. Various approaches were tried to improve the

resolution of the powerful Discrete Fourier Transform

(DFT) computed by the Fast Fourier Transform (FFT)

algorithm, such as Linear Prediction (LP) [9,10],
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Maximum Entropy Method (MEM), maximum likeli-
hood, and Bayesian methods, reviewed in [11]. The

recently described Filter Diagonalization Method

(FDM), initially used to identify and quantify the

number of NMR transitions in a given NMR spectrum,

was developed to accomplish the ultimate data com-

pressing [12]. FDM extracts parameters directly from

the time domain signal by fitting the data to a sum of

exponentially damped sinusoids, and has successfully
been applied up to 4D experimental data [13]. How-

ever, it should be stressed that all these procedures

work well and give comparable results if the signal to

noise ratio (S/N) is high, but they may perform differ-

ently and produce artifacts or ghost signals when S/N is

too low.

A very simple, reliable and fast procedure, based on a

restricted least square minimization, has been applied in
the field of Magnetic Resonance Imaging (MRI) to

overcome strong truncation effects and improve the ac-

curacy of any 1D or nD experiment provided the fre-

quency components and line shapes are known [14]. In

solid state NMR, provided the summation onto one of

the indirect dimensions is isotropic and known in ad-

vance, a similar fitting procedure was developed under

the name of TIGER [15], and was extended to the case
of general line shapes by the ANAFOR strategy [16].

The latter procedure applies when everything but the

complex amplitudes of the different lines is known, at

least in the dimension where one wants to apply

ANAFOR. The ANAFOR acronym has been suggested

by Taulelle [16] as ‘‘ANAlysis of FOuRier,’’ and recalls

‘‘anaphora’’ a literature term well known in literature,

that consists of repeating the same word or phrase—the
prior knowledge—at the beginning of successive clauses

or sentences to reinforce their meaning. However re-

strictive this notion of prior knowledge might appear,

we show here that this assumption is essentially fulfilled

in all heteronuclear 3D spectra of biomolecules. Indeed,

all these spectra are collections of a basic 2D experiment

(often a 1H–15N HSQC spectrum), that is amplitude

modulated to give the frequency components in the
third (or higher) dimension. The aim of the present

paper is to show that efficient use of this a priori in-

formation allows to overcome to a large extent the

above described dilemma of resolution versus time.

2. Restricted least square procedure

ANAFOR uses a restricted linear least square pro-

cedure in order to calculate in the time domain the

complex amplitudes (Ak) of the components of the Free

Induction Decay (FID), knowing in advance the number

of resonances and their line features: frequency and

lineshape. This prior knowledge limits its application

but makes the procedure general as not only exponen-

tially damped sinusoids are tolerated. Similarly to LP, a
merit function v2 is minimized:

v2 ¼
XNf
i

yexpðiÞ � ycalðiÞ
ri

� �2
; ð1Þ

where Nf is the number of experimental points, yexpðiÞ
and ycalðiÞ are, respectively, the ith sampled experimental
and calculated FID points, and ri is the standard devi-

ation of yexpðiÞ. The summation over i can be performed
for linearly or non-linearly sampled data points. This

not only eliminates the need for the time signal to start

at time zero, but also allows an easy tailoring of the

recorded time series in order to optimize the S/N ratio

and/or experimental time [17].

The general form of ycalðiÞ is

ycalðiÞ ¼
XM
k¼1

AkfkðiÞ; ð2Þ

where M 6Nf is the number of resonances. The function
fkðiÞ corresponds to the kth component of the FID
(known in advance) and Ak is its amplitude that has to

be calculated. This prior knowledge of the frequencies is

the essential difference with the linear prediction algo-

rithm, where the frequency components are a priori

unknown variables that have to be calculated from the

time signal. Moreover, the shape of the basis function

fkðiÞ can be arbitrary, and is definitely not limited to the
Lorentzian line usually assumed in LP algorithms. The
minimum of Eq. (1) occurs where the derivatives of v2

with respect to all parameters Ak vanish, yielding the M

normal equations:

0 ¼
XNf
i

1

r2i
yexpðiÞ

 
�
XM
k¼1

AkfkðiÞ
!
fkðiÞ; k ¼ 1; . . . ;M :

ð3Þ
Because the algorithmic used to solve this set of

equations has been described in detail in the framework

of its application to solid state NMR spectra [16], we

give a brief analytical description of the concept for two

simplified cases of a cosine transform of one single and
two resonance lines on a given trace, neglecting any

damping or noise contribution.

When we know a priori that there is only one

frequency component in the time signal with known

frequency x1, then the general Eq. (2) reduces to

ycalðiÞ ¼ A1 cosðx1tiÞ: ð4Þ
Contrary to the well-known linear prediction algo-

rithms, the a priori knowledge of the frequency value x1

will be used in ANAFOR, whereas LP first has to derive
the number of frequency components and their fre-

quencies, and only then further proceeds to derive their

amplitudes. If the Nf first experimental points are con-
sidered, the sum to be minimized with respect to the

unknown amplitude A1 is
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XNf
i¼1

yexpðiÞ
�

� A1 cosðx1tiÞ
�2
; ð5Þ

which leads to the following solution:

A1 ¼
PNf

i¼1 yexpðiÞ cosðx1tiÞPNf
i¼1 cos

2ðx1tiÞ
: ð6Þ

This is identical to the result that would be given by

the cosine transform for the same time signal. If more-

over yexpðiÞ ¼ A cosðx1tiÞ, Eq. (6) reduces to A1 ¼ A.
The situation is somewhat more complex for a time

signal that contains two frequency components, with

frequencies x1 and x2, but unknown amplitudes A1 and
A2. Similarly as above, we define the calculated signal

ycalðiÞ ¼ A1 cosðx1tiÞ þ A2 cosðx2tiÞ ð7Þ
and, derive the sum to be minimized with respect to the

two independent parameters A1 and A2 asXNf
i¼1

yexpðiÞ
�

� A1 cosðx1tiÞ � A2 cosðx2tiÞ
�2
: ð8Þ

Partial deriving this sum with respect to both un-

known amplitudes leads to a set of two linear equations,

that can be easily solved to give

When we fill out the explicit form of yexpðiÞ ¼
A cosðx1tiÞ þ B cosðx2tiÞ, we find as before A1 ¼ A and

A2 ¼ B. It is thus clear that two experimental points are
sufficient to give the correct answer if, as stated before,

noise is neglected.

It is instructive to compare this result with those of

the regular cosine transform. Indeed, real Fourier

transformation yields an amplitude of the frequency
component at x1 given by

Aðx1Þ �
XNf
i¼1

yexpðiÞ cosðx1tiÞ; ð10Þ

which, involves both amplitudes A and B when the ex-
perimental signal is the sum of two frequency compo-

nents

Aðx1Þ � A
XNf
i¼1

cos2ðx1tiÞ þ B
XNf
i¼1

cosðx1tiÞ cosðx2tiÞ:

ð11Þ
The non-orthogonal nature of the finite summation of

the two cosine components leads to an effective mixing,

that will be all the more effective when the number of
experimental points is smaller and the frequency sepa-

ration lesser. This illustrates well the main advantage of

ANAFOR over the DFT algorithm, as its use of the
prior frequency knowledge will lead to a better separa-

tion of the different frequency components.

3. Application to heteronuclear biomolecular spectra

Fig. 1 shows the annotated 1H–15N HSQC spectrum

of ubiquitin. As stated above, because of the hyphenated
nature of modern triple-resonance spectroscopy, many

3D spectra can be written down as a stack of this same

2D spectrum, where the amplitudes of the correlation

peaks represent a wave modulation in the third dimen-

sion. For example, in a HNCA spectrum [6], the mod-

ulation corresponds to the carbon frequencies of one or

more Ca nuclei, but it could well be proton frequencies
as is the case in the NOESY-HSQC spectrum.
The strategy to exploit this prior information be-

comes clearer when we consider the 15N trace through

the isolated correlation peak 1. Because only one unique

nitrogen frequency corresponds to this peak (Fig. 1), we

do not need more than one complex point in the second

dimension for all subsequent corresponding traces

in the 3D experiment. Indeed, prior knowledge of the

uniqueness of its line position and lineshape allows

A1 ¼
PNf

i¼1 yexpðiÞ cosðx1tiÞ
PNf

i¼1 cos
2ðx2tiÞ �

PNf
i¼1 yexpðiÞ cosðx2tiÞ

PNf
i¼1 cosðx1tiÞ cosðx2tiÞPNf

i¼1 cos
2ðx1tiÞ

PNf
i¼1 cos

2ðx2tiÞ �
PNf

i¼1 cosðx1tiÞ cosðx2tiÞ
� �2 : ð9Þ

Fig. 1. 1H–15N correlation spectrum of ubiquitin corresponding to the

first plane of the 3D HNCA experiment. The spectrum was recorded

with 34 complex points in the 15N direction, and 64 scans per incre-

ment. Peak picking was done automatically within the SNARF pro-

gram (F. van Hoesel, Groningen, the Netherlands). Only those peaks

that are discussed in the text have been annotated. The projection of

the spectrum onto the nitrogen dimension is reported on the left. On

the right, two individual 15N traces through peak 1 and peak 7 are

shown. In the latter trace, choosing the threshold as indicated by the

line leads to 7 frequency components.
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direct evaluation of its complex amplitude from the first
data point, as Fourier transform tells us that the first

point of the time domain signal is equivalent to the in-

tegral of the frequency spectrum. The presence of a

unique signal in the 15N dimension makes evidently any

spreading out in this dimension without any conse-

quence. For other cross peaks, amide proton chemical

shift degeneracies can occur, and they will be even more

severe as the protein is larger. For example, the 15N
trace corresponding to peak 7 (Fig. 1), contains at least

seven peaks. Here again, however, a standard peak

picking routine as implemented in most NMR packages

can yield the frequency position of everyone of these

peaks, and these will be invariant over further planes of

the 3D experiment. The problem of linewidth estimation

is less trivial, but can equally be overcome (see below). If

only we give sufficient data points to assure that the least
square problem of Eq. (1) is not underdetermined, we

can hopefully extract the correct amplitudes for all

further planes, and use these to reconstruct the time

signal in the third dimension.

It is clear from these few examples that the procedure

will require a reference 2D spectrum, in which both

resolution and signal to noise ratio should allow a good

determination of all correlation peaks that one wants to
further consider. The requirement of a 2D reference

spectrum distinguishes our procedure from the previ-

ously described TIGER algorithm [15] or even from the

previously described application of the restricted linear

least square procedure to 2D solid state spectra [16], that

both required one single 1D spectrum for the indirect

dimension. In the case of biomolecular spectra, this

would be equivalent to the 15N projection of the 1H–15N
HSQC spectrum (Fig. 1, left), but it is intuitively clear

that use of the individual traces rather than the projec-

tion greatly simplifies the problem.

In the next paragraph, we will first describe the

concrete implementation of the algorithm as applied to a

3D HNCA spectrum of ubiquitin, before going deeper

into such considerations as resolution and sensitivity

enhancement.

4. Implementation for the 3D HNCA spectrum of

ubiquitin

The 2D 1H–15N reference spectrum (here taken as the

first plane of the HNCA, with a large number of com-

plex points in the indirect 15N dimension) was trans-
formed by DFT in both dimensions, and peaks were

picked automatically. The result is a number of coor-

dinates for both proton and nitrogen frequencies, that

are stored in two separate variables. Lineshapes can

equally be extracted in a straightforward fashion when

sufficient points are available in the indirect dimension,

but we will see further that this is not even a stringent

criterion. The 2D 1H–15N planes of the HNCA spec-
trum are then processed individually using these coor-

dinates. For each plane, we first apply the DFT

algorithm to the direct proton dimension, and then de-

rive the 1D 15N interferograms with Nf complex points
for those lines that correspond to a relevant proton

frequency according to the reference spectrum. Working

with traces rather than strips simplifies the procedure,

but the latter can be easily implemented by taking the
relevant proton frequencies surrounded by a predefined

number of points. The information for the least square

processing of the interferogram comes from the equiv-

alent 15N trace in the reference spectrum, where the peak

picking with a predefined threshold defines all peaks to

be considered on that line. With this information of line

positions and lineshapes, the set of base functions is

constructed, and the least square problem of Eq. (1) is
solved. The complex amplitudes can be used directly to

construct the interferogram in the third dimension, or

serve to reconstruct a 15N interferogram with the desired

number of points, that then is transformed by the reg-

ular DFT algorithm.

In order to make our strategy more tangible, we show

the different steps in Fig. 2. The 15N trace of peak 10 in

the reference spectrum contains 3 peaks at the fre-
quencies of )666, )108, and 494Hz with respect to the
offset, with an estimated natural linewidth of 1Hz (Fig.

2a). With this information and the experimental points

of the interferogram corresponding to the first plane of a

Fig. 2. (a) Trace through peak 10 of the reference spectrum. The

threshold for the peak picking is indicated by the dotted line, and leads

to three frequency components at )666, )108, and 494Hz with respect
to the offset. This information together with the corresponding inter-

ferogram from first plane of the HNCA (recorded with eight complex

points in the 15N direction and 4 scans per increment) is used as input

for the restricted least square minimization algorithm, that determines

the three amplitudes. (b) The interferogram reconstructed to 34 com-

plex points is transformed by FFT.
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3D HNCA spectrum recorded with only eight complex
points in the 15N dimension, the complex amplitudes of

the 3 components are calculated, and these are used to

reconstruct an interferogram of 34 complex points. This

latter is then transformed by DFT (Fig. 2b), and written

into the 2D matrix, before going to the next 15N inter-

ferogram corresponding to the following cross peak. All

consecutive 2D planes are transformed in a similar way,

building up the full 3D matrix. Whereas we at this
moment could consider a similar restricted least square

procedure for the third dimension, this would require a

different 13C reference spectrum for the different HNCA,

HNCO, CBCACONH,. . . triple-resonance experiments.
In order to avoid this lengthy recording of all reference

spectra, we limit here the restricted least square

procedure to the 15N dimension. We therefore recorded

the standard number of complex points in the carbon
dimension, and transformed the spectra in this third

dimension by the regular DFT algorithm.

In the following paragraphs, we will discuss in further

detail the importance of such parameters as number of

lines and threshold choice, resolution, lineshape, num-

ber of experimental data points and finally S/N ratio of

the spectrum.

5. Number of lines

If we imagine a 15N trace of the reference 2D spec-

trum that contains two lines, it is clear that one complex

point is not sufficient to calculate the independent

intensity of both lines. Indeed, the mathematical mini-

mization problem of Eq. (1) is underdefined, or, alter-
natively, with one single point, the amplitude can be

freely distributed between both lines. If we give a second

experimental point, and the data are noiseless, the

problem is in principle totally determined. However, the

data are subject to noise, and the amplitude distribution

between both lines will be more reliable with an in-

creasing number of experimental points and with a

growing frequency difference between both lines. For the
ubiquitin spectrum, the S/N ratio is very good, and as

shown in Fig. 3, even with a separation of 40Hz, both

lines can be distinguished with reasonable accuracy

when we use as little as four complex points.

This analysis, however, does not deal with the general

problem of underdetermination: what happens when the

number of lines on a trace is larger than the number of

experimental points? This problem that, especially for
the central region of the 1H–15N spectrum of a larger

protein, seems to limit the usefulness of the method, has

been investigated previously by Knijn et al. [18] in the

framework of frequency-selective quantification in

the time domain, and relates to the non-orthogonality of

the cosine functions whenever they are sampled over a

finite number of points. Knijn et al. [18] concluded that

the contribution of the ignored sinusoid relates to the

height of the corresponding frequency-domain spectral

peak at the position of the wanted peak. This result is

illustrated by the simulations of a spectrum composed of

two lines of intensities 1 and 0.5, processed with the
assumption of a single line (Fig. 4). If the two frequen-

cies are very close, the algorithm assigns both intensities

to the same line. As the separation between the lines

increases, omitting the second line has less and less in-

fluence on the calculated intensity of the first one. When

normalized to the initial intensity of 1.5, the intensity

approaches rapidly its true value of 1 as the frequencies

start to diverge (Fig. 4). That the convergence speed

Fig. 3. Reconstruction of a trace containing two lines separated by

40Hz. In (a) the trace through peak 1 of the reference spectrum was

added to itself after scaling by a factor of 0.5 and a frequency shift of

40Hz. (b) Reconstructed trace using four complex points of the in-

terferogram corresponding to the spectrum in (a), and the information

on the two frequency components.

Fig. 4. Effect of omitting a frequency component. Synthetic time sig-

nals composed of two frequency components shifted by variable Dx
(generated as described in legend of Fig. 3), have been processed as-

suming the presence of a single component. The calculated amplitude

is reported as a function of the separation between the two lines. When

both lines coincide, the full intensity (1.5) is associated with the unique

line, but its intensity correctly converges to one as the separation be-

tween the lines increases. The amplitudes were calculated with 4 (solid

line), 8 (hyphened) or 16 (dotted line) complex points.
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increases with an increasing number of experimental
points is again intuitively clear. With more points, the

component in the time signal that is not at the given

frequency will contribute less and less effectively to the

calculated intensity of the first line. We found that the

influence of omitting a frequency component that is

actually present in the FID becomes negligible when

DmNfs > 0:6, where Dm is the frequency difference and s
is the dwell time. With eight complex points recorded,
and a typical dwell time of 500 ls, this result implies that
if there is more than eight frequency components on a

given trace, the base functions with frequency values

outside the range of �150Hz from the line considered

can safely be neglected.

6. Influence of the threshold

The threshold chosen to pick an individual trace in

the reference spectrum immediately influences the

number of basis functions that one will impose in the

least square treatment of the corresponding traces in

the 3D spectrum. This paragraph therefore serves as a

concrete example of the above described discussion on

the number of lines. If we look at the 15N trace of the
reference spectrum through peak 8 (Fig. 5a), we find,

close to peak 8 at 524Hz, three other components that

correspond to other amide groups with almost the same
1H frequency (peak 2 at 656Hz, peak 14 at 458Hz and

peak 64 at )492Hz). The weaker intensity of these lines
reflects the fact that the trace through peak 8 does not

intersect the center of the other lines but rather their

wings. Depending on the threshold that we will choose
to pick this trace, the number of peaks can vary between

one and four. If we choose the threshold above the

maximum of the three minor peaks (solid line in Fig.

5a), the algorithm will assign all intensity to peak 8.

Peaks 2 and 64 (at 656 and )492Hz, respectively) will
not influence significantly its intensity if we use eight

complex points, as DmNf s > 0:6. However, peak 14

separated by only 66Hz from peak 8 (and thus within
the range defined by DmNf s < 0:6) will contribute to the
amplitude of the latter. As moreover the intensity of

peak 14 is modulated by its own 13C frequency, its

contribution to peak 8 is equally modulated. A Fou-

rier transform in the third dimension (Fig. 5e) there-

fore shows, next to the 13Ca frequencies corresponding
to peak 8, 13Ca signals that correspond to peak 14

(Fig. 5f). Decreasing the threshold a first time (hyph-
ened line in Fig. 5a) introduces two additional frequency

components to the fit, but not the one corresponding

to peak 14 (dot line in Fig. 5a), and the spurious 13Ca
signals remain (Fig. 5d). Only when we decrease the

threshold such as to take explicitly into account peak

14, its amplitude modulation does not contribute

anymore to the calculated intensity for peak 8. As a

result, the spurious modulation at the 13Ca frequency

of peak 14 disappears from the 13Ca line of peak 8

(Fig. 5c). Whereas one could object that the threshold

choice has such an important influence that it should

almost be performed manually for every peak, putting

an impossible burden on the operator, we found that a
threshold at three times the noise level of the spectrum

does efficiently eliminate the above described problems,

without introducing any artifacts.

Fig. 5. (a) Trace of the reference spectrum through peak 8 with four

frequency components at 656, 524, 458, and )492Hz with respect to
the offset. The choice of the threshold (in arbitrary units, 6 for the full

line, 2 for the hyphened line and 1 for the dotted line) determines

whether 1, 3, or all 4 peaks are taken into account for the subsequent

minimization. Spectrum (b) is the 13C trace of peak 8 from the HNCA

acquired with 34 complex points in the 15N dimension and trans-

formed by FFT. From (c) to (e), the resulting 13C spectra in the third

dimension coming from a restricted least square minimization of the

HNCA planes with eight complex points in the 15N dimension, and

taking the threshold at 1 (c), 2 (d), or 6 (e). Spectrum (f) is the 13C

modulation corresponding to peak 14, obtained from the full FFT

transformed HNCA spectrum, that leaks into the 13C interferogram of

peak 8 when not taken into account.
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The above results illustrate clearly that taking into
account all frequency components in the immediate

neighborhood of the peak under consideration is an

important criterion. Based on the requirement of a

number of experimental points larger than the number

of frequency components within the range of

DmNf s < 0:6 from the peak under consideration, taking

eight experimental complex points, limits to eight the

number of 15N frequency components that we can
consider within a range of 150Hz of the central line,

which is totally acceptable for the 15N resolution on a

14.1T spectrometer.

7. Influence of the linewidth

Although applicable to any line shape [16], our initial
assumption of Lorentzian lines for the ubiquitin 15N

resonances makes the algorithm fit the experimental

FID to a sum of damped exponential sinusoids. We

therefore need not only the frequencies but also the

damping constants of every component. These damping

components can easily be extracted from the reference

HSQC, providing a large number of 15N increments are

recorded. Since this experiment has to be performed
only once, it is not very time-consuming to record it with

a 15N evolution time long enough (3 times the T2 or
more). Because in the case of ubiquitin lines are ex-

tremely narrow, we have decided to treat the influence of

the linewidth on a different protein, the PA92 mutant

of the 13 kD Cyclin dependent Kinase Subunit (CKS) of

S. pombe, which shows a faster relaxation than ubiquitin

[19]. A 1H–15N HSQC recorded with 512 complex points
in the 15N evolution was transformed by DFT without

application of any filter. Whereas this gave immediately

a good estimate of the linewidth of every peak, the fit-

ting algorithm itself can be used to estimate the widths

when few lines are present. Starting from a trace of the

reference 1H–15N HSQC spectrum of this protein re-

corded with only 34 points in the 15N dimension, we

performed the reconstruction by introducing different
linewidths (Fig. 6a). When the linewidth is underesti-

mated (3Hz instead of the actual 11Hz), the initial

amplitude of the reconstructed FID decreases as the

number of experimental points taken into account for

the reconstruction grows. Inversely, when we overesti-

mate the linewidth (30Hz instead of 11Hz), giving more

experimental points leads to an increase in initial signal

intensity, as the algorithm tends to compensate the too
rapid signal decrease by an initial higher intensity (Fig.

6a). This indicates not only the error introduced by an

erroneous estimation of the linewidth, but it also gives a

method to optimize the estimation. Only for the correct

linewidth, the reconstructed FID follows the experi-

mental signal, irrespective of the number of experimen-

tal points taken into account. For a single line, we

therefore can extract the linewidth by reconstruction of

the corresponding trace of the reference spectrum with a

varying number of experimental points, and by requir-

ing that at the correct linewidth the initial amplitude of

the reconstructed FID does not depend on the number
of experimental points that we take into account (Fig.

6b). Whereas this method leads to a precise estimate of

the true linewidth, but at the same time shows that the

input T2 values are not a very critical parameter, it is not
well suited for the simultaneous linewidth estimation of

several frequency components, as compensation effects

can occur. Therefore, especially in the case of inhomo-

geneous line broadening of the different correlation
peaks, we recommend using the reference spectrum to

extract the linewidths.

(a)

(b)

Fig. 6. (a) The interferogram of a trace through the 15N HSQC of the

CKS protein p13suc1 (solid line) was calculated using 4 (filled squares),

16 (open squares), or 32 (dotted squares) complex points, and an

overestimated linewidth of 30Hz. Enforcing a too rapid decay of the

FID leads to an increase of the initial amplitude when we take more

complex points into account. Amplitude axis is in arbitrary unit and

time axis in unit of dwell time. (b) Initial amplitude of the same in-

terferogram as a function of the number of complex data points used,

with estimated linewidths of 3Hz (circles), 11Hz (triangles) or 30Hz

(squares). When the linewidth is correctly estimated, the calculated

FID follows closely the experimental one, and the initial amplitude

becomes independent of the number of data points used in the mini-

mization procedure.
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8. Uncertainty of the calculated amplitude as a function of
Nf

For a trace with one single peak, such as the one

corresponding to peak 1 in the 2D spectrum of ubiquitin

(Fig. 1), a single complex point of the interferogram is

sufficient to calculate the complex amplitude of the

corresponding spectral line. The uncertainty of the cal-

culated amplitude will, in this case, be that of the ex-
perimental data point. If we use more data points, and

impose that the time signal corresponds to one peak

with a given frequency and lineshape, one can readily

understand that the error margin on the amplitude will

decrease. In fact, it has been shown [16] that in the case

of one single Lorentzian line, the incertitude of the

calculated amplitude is given by

rA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2=q

1� e�2Nf=q

r
� rn; ð12Þ

where q is a density of points, corresponding to the

number of sampled points during one T 	
2 interval, rn is

the standard deviation of the noise and, rA the standard

deviation of the real and imaginary parts and also of the

modulus of the complex amplitude A. Eq. (12) has been

confirmed in the particular case of solid state REDOR
measurements but it is important to check its validity in

our frame of biomolecular NMR. In the case of solid

state spectra, T 	
2 could be as short as the dwell time

(q < 10) but in the case of workable protein spectra, it

will be large compared to a typical dwell time of hun-

dreds of ls ðq > 100Þ.
In the ideal case of an infinite density of points

(q 
 Nf ), the error estimate simplifies to

rA ¼ rnffiffiffiffiffi
Nf

p : ð13Þ

This expression signifies that every point of the in-

terferogram contributes equivalently to the signal, and
therefore an increase in the number of experimental

points in the interferogram is identical to an increase in

the number of accumulated scans. In Fig. 7, the esti-

mated uncertainty on the calculated amplitude of the

single frequency component corresponding to the trace

through peak 1 of ubiquitin as a function of the number

of experimental points fitted confirms the above derived

expression.
In the case of extensive line broadening, due to the

slow tumbling for larger proteins or due to non-uniform

T2 relaxation in the case of conformational heterogene-
ity, limiting the data points to short evolution times does

lead to some sensitivity enhancement. Eq. (12) was then

tested with a Monte Carlo simulation on a corpus of 100

synthetic signals. As a noise estimate, we extracted tra-

ces from the empty region of the 1H–15N HSQC, cor-
responding to proton frequencies between 0 and 2 ppm,

and added a synthetic signal corresponding to the same

frequency component of 16Hz width (T2 value of 20ms).
Because the restricted linear least square minimization is

identical to DFT when one single component is present,
we could use our procedure to calculate the amplitude of

the single component both with eight or 32 complex

points. The variance of the calculated amplitude when

considering the 100 noise traces was 7% of the full signal

amplitude when we used eight complex points from the

HSQC recorded with 512 scans, but increased to 11%

when we took 32 complex points from the HSQC re-

corded with 128 scans. In this example, where we have
29 sampled points in a T2 interval, the general form [12]

derived for the variance of the signal amplitude predicts

a 60% increase for the variance, in agreement with the

numbers we found in our simulations. In conclusion,

Eq. (12) describing the standard deviation of the calcu-

lated amplitude as derived in [14] remains valid for

biomolecular NMR. When linewidths are narrow, it can

be simplified to Eq. (13). We may further add that the
uncertainty is mathematically expected to be less with

ANAFOR than with DFT but no major gain is to be

expected when DFT is performed in optimal conditions

without truncation and with the use of a matched filter

[14].

9. Conclusion

In the present paper, we have revisited the restricted

least square minimization procedure as a tool for the

processing of biomolecular multidimensional spectra. It

was shown that high resolution 2D HSQC spectrum can

advantageously be used as a reference spectrum to give

the necessary input of frequency components and line-

widths for data treatment of the 3D spectrum. Even
combined with a limited time evolution in the indirect

Fig. 7. Estimated uncertainty on the calculated amplitude as a function

of the number Nf of fitted experimental points. Input data were the
single frequency and linewidth of the trace through peak 1 of the

reference spectrum, and the interferogram corresponding to the same

peak 1 in the first plane of the HNCA experiment.

G. Lippens et al. / Journal of Magnetic Resonance 161 (2003) 174–182 181



dimension, the amplitudes of the correlation peaks in all
planes of the 3D spectra can be extracted, and can be

used to reconstruct the interferograms in the third di-

mension. We have demonstrated this for a HNCA

spectrum, where the use of only eight complex points

leads to a fourfold gain in time, by far compensating the

initial time spent on the 2D reference spectrum. Evi-

dently, in other applications such as heteronuclear re-

laxation measurements, where in a similar way a series
of 2D spectra has to be acquired, equivalent gains in

time can be obtained. Because moreover one single
1H–15N HSQC can form the reference spectrum for the

whole set of triple-resonance spectra commonly used to

assign small to intermediate sized proteins, we believe

that the proposed processing will show its use in the field

of structural genomics, as it allows a simple procedure to

work with truncated data sets.
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